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How close?  Goodness-of-Fit v. Precision/Inference 

1. After we have derived the OLS parameter estimates, 0β̂  and 1̂β , the question always arises:  
How well did we do?  How close are the estimated coefficients to the true parameters, 0β  
and 1β ?  We'll have several answers.  None will be entirely satisfactory… though they will 
be informative, nonetheless. 

2. Quality of the Overall Model (Goodness-of-Fit):  Goodness-of-Fit metrics tell us 
something about the quality of the overall model, about how well the predicteds fit the 
actuals.  They may not tell us as much as we'd like to know about how precisely we've 
estimated the true parameters.  But if we have a lot of data and the Goodness-of-Fit metrics 
look good, then we should feel pretty good about our estimated coefficients, even though 
there is always some probability that they are way off. 

a. GOF Metric I:  MSE (Mean Squared Error) 
i. MSE is almost sort of like an average squared residual…  I say almost sort of like 

because instead of taking an average (and dividing by n), we divide the sum of the 
squared residuals by n-2.  (As you'll see later, that choice 
reflects an interest in unbiasedness.) 

b. GOF Metric II:  2R  (Coefficient of Determination)  

i. There are two equivalent ways to think about 2R .   

1. One interpretation is that it measures the proportion of the variation in the y's (the 
actuals) explained by the ˆ 'y s  (the predicteds). 

2. Alternatively, it captures the magnitude of the correlation between the y's and the 
ˆ 'y s , the actuals and the predicteds. 

ii. It will turn out that 20 1R≤ ≤ , and so if we have 2R close to 1 we say that goodness-
of-fit is high, and if it's close to 0, goodness-of-fit is low.  In contrast, it won’t always 
be so obvious whether the MSE's are large or small in magnitude. 
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3. Quality of the Individual Parameter Estimates (Precision/Inference):  While goodness-
of-fit metrics tell us something about how well our estimated model fits the data, they don't 
directly tell us anything about how precisely we have estimated the unknown parameters, the 
true ' sβ  .  Later on, we will have lots to say about precision of estimation… but that 
discussion awaits the development of the tools of statistical inference, including Confidence 
Intervals and Hypothesis Tests. 
While those inferential tools won’t with certainty answer the question How Close?, they will 
give us probabilistic assessments as to how close our estimated coefficients are to the true 
unknown parameter values:  levels of confidence for confidence intervals and significance 
levels for hypothesis testing. 

4. Who knew?  They are related!  It may appear at first glance that Goodness-of-fit and 
Precision/Inference are completely unrelated, as one looks at how well a SLR model fits the 
data whilst the other considers the precision of estimation of individual parameters.   

But quite the contrary!  Once we get to statistical inference, you will see that in a very 
formal/concrete way, the precision of parameter estimation is driven entirely by just two 
factors:  

• the 2R  Goodness-of-fit metric, and  
• the number of observations in the dataset.   

So these two apparently independent assessment metrics are not independent…  not at all.  
Stay tuned! 

Before turning to 2R  we first need to introduce some ANOVA (Analysis of Variance) 
terminology and results. 
 
 
Bring on the ANOVA (SST, SSE and SSR)  

5. Some definitions which will be useful in deriving the MSE/RMSE and 2R  goodness-of-fit 
metrics:1 

a. SST:  Total Sum of Squares … 2( )iy y−∑  

i. This the sum squared deviations of the actual values of the dependent variable from 
its mean.   

ii. Since 21 ( )
1 1yy i

SSTS y y
n n

= − =
− −∑ , ( 1) yySST n S= − … ( 1)n −  times the variance of 

the actuals. 

  

                                                 
1 Everyone doesn’t always use the same terminology for these concepts.  In Stata regression output, SST is SS Total, 
SSR is SS Residual, and SSE is SS Model.  And some authors flip the definitions of SSE and SSR. 
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b. SSE:  Explained Sum of Squares … 2ˆ( )iy y= −∑   

i. This is the sum squared deviations of the predicted values of the dependent variable 
from the mean of the actual values. 

ii. If there’s a constant term in the model, the mean of the actuals is also the mean of the 
predicteds, ˆy y= .  In this most common case: 2 2ˆ ˆ ˆ( ) ( )i iSSE y y y y= − = −∑ ∑ … 

and so 2
ˆˆˆ( ) ( 1)i yySSE y y n S= − = −∑  … ( 1)n −  times the variance of the predicteds. 

c. SSR:  Residual Sum of Squares… 2 2ˆ ˆ( )i i iu y y= −∑ ∑  

i. This is the sum squared residuals, the sum of the squared differences between the 
actual and predicted values of the dependent variable.   

ii. Since ˆ 0iu =∑ , the residuals by construction have mean 0, and so ˆ ˆ 1uu
SSRS
n

=
−

…  or 

put differently, ˆ ˆ( 1) uuSSR n S= − … ( 1)n −  times the variance of the residuals. 

6. To summarize: 

• 2( ) ( 1)i yySST y y n S= − = −∑ , (n-1) times the variance of the actuals 

• 2
ˆˆˆ( ) ( 1)i yySSE y y n S= − = −∑ , (n-1) times the variance of the predicteds 

• 2 2
ˆ ˆˆ ˆ( ) ( 1)i i i uuSSR u y y n S= = − = −∑ ∑ , (n-1) times the variance of the residuals 

 

7. Result: 2  SST = SSE + SSR, if there is a constant term in the 
model. 

a. … or dividing through by (n-1), we have 

1 1 1
SST SSE SSR
n n n

= +
− − −

, or ˆˆ ˆ ˆyy yy uuS S S= +   

b. In words:  The sample variance of the actuals is the sum 
of the sample variances of the predicteds and of the 
residuals. 

c. What drives this result?  Since we have a constant term 
in the regression, the mean of the predicted values is the 

                                                 
2Proof:  The trick is to add and subtract ˆiy  inside the expression and to then simplify: 

2 2ˆ ˆ( ) ( )i i i iy y y y y y− = − + −∑ ∑   2 2ˆ ˆ ˆ ˆ( ) ( ) 2 ( )( )i i i i i iy y y y y y y y= − + − + − −∑ ∑ ∑  

ˆ ˆ2 ( )( )i i iSSR SSE y y y y= + + − −∑ .  So we just need to prove that ˆ ˆ( )( )i i iy y y y− −∑
ˆ ˆ( ) 0i iu y y= − =∑ , the sample covariance of the predicted values and the residuals is zero. 
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same as the means of the actuals… or put differently:  ŷ y= .  And that fact drives the 
result. 

8. You shouldn’t be too surprised by this result.  Earlier we showed that OLS effectively 
decomposed the y's into two uncorrelated parts, predicteds and residuals.  And since 

ˆ ˆi i iy y u= +  and ˆ ˆˆ 0yuρ = , the sample variance of the actuals will be the sum of the sample 
variances of the predicteds and of the residuals… which is exactly the result above, 

ˆˆ ˆ ˆyy yy uuS S S= + .  So perhaps you saw this coming. 

9. This result does not necessarily hold if there is no constant (intercept) term in the model.  But 
do not fear!  There are lots of good reasons for including a constant term in your model.  In 
fact, general practice is to always include a constant term in your model unless you have a 
specific reason not to do so. 

 
Goodness-of-Fit I:  Mean Squared Error (MSE/RMSE) 

10. MSE provides one measure of how close your predicted values are to the actuals: 

a. 
2

SSRMSE
n

=
−

.3    measured in squared units of the dependent variable. 

11. To put the metric in the same units as the y's, we take the square root of the MSE… this gives 
us Root Mean Squared Error (RMSE), which is sometimes called the standard error of the 
regression.  This metric is sort of like an average deviation of predicted from actuals… but 
not quite, give the specifics of the calculation and for reasons previously discussed. 

a. 
2

SSRRMSE MSE
n

= =
−

…  measured in units of the dependent variable.   

12. Sometimes we also look at, Mean Absolute Error (MAE), a goodness-of-fit metric closely 
related to RMSE: 

a. 1 ˆi iMAE y y
n

= −∑ , where ˆi iy y−  is the absolute value of the ith residual.   

b. MAE's are not typically included in standard regression package results… but they can 
usually be obtained easily. 

13. One of the challenges in working with MSEs, RMSEs and MAEs is interpreting magnitudes.  
On their face, it's not obvious whether these metrics are small or large in magnitude.  So 
you'll need to bring other information to bear in forming an opinion as to how well your 
model has fit the data.  Our alternative metric, the Coefficient of Determination ( )2R ,  
provides more readily interpreted results.   

                                                 
But since ( ) ( )0 1 0 1 1

ˆ ˆ ˆ ˆ ˆˆi i iy y x x x xβ β β β β− = − − + = − , ( )1̂ˆ ˆ ˆ( )i i i iu y y u x xβ− = −∑ ∑  … and this is 

0, since ( )ˆ 0i iu x x− =∑ . 
3 As you'll see later in the semester, we divide by (n-2) rather than n to achieve unbiasedness. 
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Goodness-of-Fit II:  R-squared 

14. Our second goodness-of-fit metric, the Coefficient of 

Determination, is defined by:  2 1 SSRR
SST

= −   

a. So long as there is a constant term in the model 
(so the mean predicted value is the same as the 
mean actual value), SSR SST SSE= −  , and so 

2
2

2

ˆ( )
1

( )
i

i

y ySSR SSER
SST SST y y

−
= − = =

−
∑
∑

. 

i. If your model does not have a constant term then this last formula need not be the 
case.  Further:  If your model does not have a constant/intercept term then you should 
not pay too much, if any, attention to 2R . 

b. Then 
2

ˆˆ2
2

ˆ( ) / ( 1) ( )
( )( ) / ( 1)

i yy

yyi

y y n SSampleVar predictedSSER
SST SampleVar actual Sy y n

 − − = = = =
 − − 

∑
∑

. 

c. By construction, 20 1R≤ ≤  (if there is a constant term in the model)… higher values 
mean that you've done a better job explaining the variation in the actuals.  Don’t get too 
excited if 2R  is close to 1, or too depressed if it’s close to 0.  Doing good econometrics is 
way more than just maximizing 2R . 

15. Interpretation I:  Ratio of Variances.  Given the results above, R-squared is the ratio of the 
Sample Variance of the predicteds to the Sample Variance of the actuals…  the percent of 
the variation of the actuals explained by the model.  This is the most common, and perhaps 
the most insightful, interpretation of 2R . 

16. Interpretation II:  Correlation2 between predicted and actuals.  2R  is also the square of the 
sample correlation between the independent and dependent variables, as well as the sample 
correlation between the actuals and predicteds:  2 2 2

ˆxy yy Rρ ρ= = .   

a. This is an important result… so here's a quick proof: 

i. We know that 1̂
xy y

xy
xx x

S S
S S

β ρ= = .   

ii. Since 0 1
ˆ ˆˆi iy xβ β= + , the sample variance of the predicted values will be defined by:  

2
0 1 0 1 2

ˆˆ 1

ˆ ˆ ˆ ˆ( ) ˆ
1

i
yy xx

x x
S S

n
β β β β

β
+ − −

= =
−

∑ .   

But then 
22

ˆˆ2 2 21̂yy y yyxx xx xx
xy xy xy

yy yy x yy xx yy

S S SS S SR
S S S S S S

β ρ ρ ρ
   

= = = = =   
   

.  
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iii. … or put differently:  Since 2
xySSE SSTρ=  (see following), 2 2

xy
SSE R
SST

ρ = = . 

( ) ( )22 2 2
0 1 0 1 1

ˆ ˆ ˆ ˆ ˆˆ ( ) ( )i i iSSE y y x x x xβ β β β β= − = + − + = −∑ ∑ ∑ .  And so 

2
2 2 2 2

2( ) ( )
( )

y
xy i xy i xy

x i

S SSTSSE x x x x SST
S x x

ρ ρ ρ
 

= − = − =  − 
∑ ∑∑

. 

iv. And since ˆxy yyρ ρ=  (the correlation of the x's and y's is the same as the correlation 

between the predicteds and the actuals), we have the desired result: 2 2 2
ˆxy yyR ρ ρ= = . 

b. When we move to MLR models, with multiple explanatory variables, we lose the 
connection between 2R  and 2

xyρ   … but the connection to the correlation between 

predicteds and actuals will carry forward ( 2 2
ŷy Rρ =  for MLR models as well).  

 
Goodness-of-Fit Applications 

17. The two goodness-of-fit metrics (R-squared and MSE/RMSE) tell you something about how 
well your model captures/explains the variation in the dependent variable, y.  They alone, 
however, do not tell you how well you’ve estimated the unknown parameter values 

0 1andβ β .  In some cases, R-squared will be high and MSE/RMSE will be low, and your 
parameter estimates will be quite poor… and vice-versa. 

a. Example:  Suppose you have a sample of size two.  With just two data points, 2 1R =  and 
0MSE = … and you have in all likelihood come up with miserable estimates of the 

unknown parameter values. 
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18. Here are a couple examples, with just five observations randomly generated using a true 
relationship given by the solid red line…. and the dashed black line shows you the OLS 
estimated SLR relationship for the given dataset.  In both cases, the 2R  is above.5, and the 
estimated relationship is all wrong.  So n matters too! 

 

  
 

19. nObs Matters Too!  We will see later that the quality of the parameter estimates depends on 
R-squared (or MSE/RMSE) and the number of observations in the dataset.  And so if R-
squared is high and MSE/RMSE is low, and you have lots of data, then you have probably 
done a pretty good job estimating the unknown parameter values.  But without much data… 
Who knows? 
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Examples in Excel and Stata 

 
Excel:  Continuing with the bodyfat example in Excel. 

Generate the predicteds, 0 1
ˆ ˆˆi iy xβ β= + , and residuals, ( )0 1

ˆ ˆˆ ˆi i i i iu y y y xβ β= − = − + .  Generate 

SSRs by squaring the residuals and summing those (use the SUMSQ() function to save a step).  

Use the COUNT() function to count your observations, and generate 
2

SSRMSE
n

=
−

 and 

RMSE MSE= . 

To generate SSEs, demean the predicteds, and compute the sum squared of those, again using 
SUMSQ().  And use SUMSQ() to compute SST using the demeaned Brozek observations.  Once 
you have all of these, you can verify that SSR SSE SST+ = .  And with SSE and SST, divide by 
n-1 to generate the sample variances of the explained and the actuals. 

You can now compute 2R  four ways: 

1. 2 1 SSRR
SST

= −  , 

2. 2 SSER
SST

= , 

3. ˆ ˆ2 ( )
( )

yy

yy

SSampleVar predictedR
SampleVar actual S

= = , and 

4. 2 2 2
ˆxy yyR ρ ρ= =  . 

 

Here’s what your results might look like: 

 

 
 

I have posted bodyfat example 2.xlsx to illustrate. 
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Running the Regression in Excel 
When you run the regression in Excel, you’ll get the following results:   

 
You can find SSE, SSR, SST, MSE, RMSE and R-squared in there … you just need to know 
where to look.  The SS’s are all in the SS column, with Regression for SSE, Residual for SSR, 
and Total for SST.  MSE can be found in the MS column, row Residual.  R squared is reported 
under Regression Statistics, and what Excel calls the Standard Error of the regression, we call 
RMSE.  So the statistics are all there… you just need to know where to look. 

 

Running the Regression in Stata 
 
. reg brozek wgt 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(1, 250)       =    150.62 
       Model |  5669.11331         1  5669.11331   Prob > F        =    0.0000 
    Residual |  9409.90318       250  37.6396127   R-squared       =    0.3760 
-------------+----------------------------------   Adj R-squared   =    0.3735 
       Total |  15079.0165       251  60.0757629   Root MSE        =    6.1351 
 
------------------------------------------------------------------------------ 
      brozek |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         wgt |   .1617088   .0131765    12.27   0.000     .1357578    .1876598 
       _cons |  -9.995151   2.389056    -4.18   0.000    -14.70039   -5.289908 
------------------------------------------------------------------------------ 
 
. predict bfathat 
(option xb assumed 
 

  

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.61316      
R Square 0.37596      
Adjusted R Square 0.37346      
Standard Error 6.13511      
Observations 252

ANOVA
df SS MS F Significance F

Regression 1 5,669.11           5,669.11 150.62         2.05905E-27
Residual 250 9,409.90           37.64      
Total 251 15,079.02         

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept (9.9952)       2.3891              (4.18)      3.97276E-05 (14.7004)         (5.2899)     
wgt 0.1617        0.0132              12.27      2.05905E-27 0.1358           0.1877      
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Again, you can find SSE, SSR, SST, MSE, RMSE and R-squared in there … you just need to 
know where to look.  The SS’s are again in column SS, but Stata now puts the SSEs in the Model 
row.  MSE’s are again in column MS and row Residual.  And R-squared and Root MSE (RMSE) 
are in the regression stats in the upper right corner. 

 

We again find that SSR + SSE = SST: 
 
. di 5669.11331 + 9409.90318 -15079.0165 
-.00001 
 

… and R-squared is indeed those correlations squared: 
 
. corr Brozek bfathat wgt 
(obs=252) 
 
             |   Brozek  bfathat      wgt 
-------------+--------------------------- 
      Brozek |   1.0000 
     bfathat |   0.6132   1.0000 
         wgt |   0.6132   1.0000   1.0000 
 
. di .6132^2 
.37601424 
 

 
Comparing SLR Models Using Goodness-of-fit Metrics 

For the applied econometrician, the journey is as important as the final destination.  And there's 
plenty of science and art along the way.  Each regression analysis tells you something… and 
leads to the next analysis.  Ultimately, you typically converge on your preferred model… but 
there was plenty of learning along the way.  And that learning definitely informed your analysis. 
As part of the learning process, econometricians are always comparing results across models, 
and making decisions about how to move forward.  We'll have a lot more to say about that later, 
but given that we are in the midst of Goodness-of-Fit metrics, why not say a few words about 
how to use those metrics to compare models? 

You can use 2R  and MSE/RMSE to compare the performance of different SLR models… but 
only to a limited extent.  And you must be careful! 
If the different models all have the same LHS data (so the y's are the same in the different 
models… both in terms of number and in terms of values), then the SSTs and 'yyS s  will be the 

same across the models, and you can compare 2R 's and MSE/RMSE's.  Under these conditions 
the 2 'R s  and the MSE/RMSE's will move in opposite directions, since:  

 

2 2 1 2 1 2
1 2 1 2 1 21 1

2 2
SSR SSR SSR SSRR R SSR SSR MSE MSE
SST SST n n

> ⇔ − > − ⇔ < ⇔ < ⇔ <
− −

 . 
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So under these conditions, models with higher 2R 's (and lower MSE/RMSE's) do a better job of 
fitting the data, and in that sense are preferable. 

But:  If the y's are not the same across the different models, then 2R 's and MSE/RMSE's are not 
directly comparable and accordingly, they won’t tell you much unless you make some 
adjustments. 

Here are some examples using the bodyfat dataset. 

 

Example 1:  Predicting Brozek with four different SLR Models 
Here are the results from four SLR models, where Brozek is the common LHS variable and hgt, 
wgt, abd, and BMI are the candidate RHS variables 
 
-------------------------------------------------------------- 
                 (1)          (2)          (3)          (4)    
              Brozek       Brozek       Brozek       Brozek    
-------------------------------------------------------------- 
hgt           -0.189                                           
             (-1.41)                                           
 
wgt                         0.162***                           
                          (12.27)                              
 
abd                                      0.585***              
                                       (22.13)                 
 
BMI                                                   1.547*** 
                                                    (16.79)    
 
_cons          32.17***    -9.995***    -35.20***    -20.41*** 
              (3.44)      (-4.18)     (-14.29)      (-8.62)    
-------------------------------------------------------------- 
N                252          252          252          252    
R-sq           0.008        0.376        0.662        0.530    
rss         14,959.3      9,409.9      5,094.9      7,087.5    
rmse           7.735        6.135        4.514        5.324    
-------------------------------------------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 

The syntax for the esttab output was:  

. esttab, r2 scalar(rss rmse) compress 
The options in the esttab statement: 

• r2:  displays 2R   
• rss:  displays SSRs 
• rmse:  displays RMSE 

and compress compresses the output so it is not as wide and fits better on the page. 

Notice that 2R  increases as you go from hgt (0.008), to wgt (0.376), to abd (0.662) and then 
decreases with BMI (0.530).  And as advertised, RMSE moves in exactly the opposite direction. 
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Looking across the four models, abd (waist size) has most explanatory power (highest 2R 's and 
lowest MSE/RMSE's), BMI is in second place, wgt is a bit behind BMI and hgt trails the field by 
a hefty margin. 

 
Example 2:  Taking ln's and mixing and matching 
In this example take ln's of Brozek and abd and run four models, mixing and matching.  In 
Models (1) and (2) Brozek is first regressed on abd, and then on lnabd; in Models (3) and (4) this 
is repeated with lnBrozek now the dependent variable. 

Here are the results: 
 
. esttab, r2 scalar(rss rmse) compress 
 
-------------------------------------||-------------------------- 
                 (1)          (2)    ||       (3)          (4)    
              Brozek       Brozek    ||  lnBrozek     lnBrozek    
-------------------------------------||-------------------------- 
abd            0.585***              ||    0.0337***              
             (22.13)                 ||   (17.85)                 
 
lnabd                       56.11*** ||                  3.299*** 
                          (22.83)    ||                (18.99)    
 
_cons         -35.20***    -234.8*** ||    -0.280       -12.07*** 
            (-14.29)     (-21.12)    ||   (-1.59)     (-15.36)    
-------------------------------------||-------------------------- 
N                252          252    ||       251          251    
R-sq           0.662        0.676    ||     0.561        0.591    
rss           5094.9       4888.8    ||     25.48        23.73    
rmse           4.514        4.422    ||     0.320        0.309    
-------------------------------------||-------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 

(Note that ||'s have been manually added to the table… you'll learn why below.) 

It is tempting to say that Model (2) is the best because it has the highest 2R  … or maybe you 
think that Model (4) is the best because it has the lowest MSE/RMSE.  Perhaps the different 
recommendations should be your first clue that 2R 's and MSE/RMSE's might not under these 
circumstances tell you the best model. 

The 2R 's and MSE/RMSE's in Models (1) and (2) are comparable to one another (since they 
have the same LHS variable)… and the 2R 's and MSE/RMSE's in Models (3) and (4) are also 
comparable to one another (they also have the same LHS variable).  But you cannot, without 
additional computations, compare the first two Models to the last two Models, because they have 
different LHS variables. 

So Model (2) performs better than (1), and (4) does better than (3)… but don’t you dare try to 
compare (2) and (4) without additional computations.  And besides, if you tried to do that, you'd 
pick (2) on the basis of higher 2R 's … or maybe (4) on the basis of lower MSE/RMSE's.  
Comparability across models with differing LHS variables is clearly an issue.   

Now you see why the ||'s are in the results table! 


